# **Does a Blockchain Need Altruism?**

Roger Wattenhofer

ETH Zurich – Distributed Computing Group

# Do You Trust the Miners?



### **Modeling Distributed Systems**



### **Modeling Distributed Systems**



# Who are the Miners?

#### **Bitcoin: A Peer-to-Peer Electronic Cash System**

Satoshi Nakamoto satoshin@gmx.com www.bitcoin.org

"The system is secure as long as honest nodes collectively control more CPU power than any cooperating group of attacker nodes."



### Mining is a Rational Business

ALTCOIN MINING MAY 21, 2018 21:50 CET

#### Japanese Cryptocurrency Monacoin Hit by Selfish Mining Attack



# Selfish Mining Timeline

#### Majority is not Enough: Bitcoin Mining is Vulnerable



Ittay Eyal and Emin Gün Sirer

Department of Computer Science, Cornell University ittay.eyal@cornell.edu, egs@systems.cs.cornell.edu



#### Topic: Mining cartel attack (Read 31693 times)

Mining cartel attack December 12, 2010, 06:09:12 PM

I came across an idea that I think is worth dis calling this a "mining cartel attack". I have no of describing it as I'm sure the thought has co essential element of Bitcoin here, but I think t are in place to stop this.

ALTCOIN MINING MAY 21, 2018 21:50 CET

#### Japanese Cryptocurrency Monacoin Hit by Selfish Mining Attack



### What is Selfish Mining



# Simpler Analysis

Majority is not Enough: Bitcoin Mining is Vulnerable Ittay Eyal and Emin Gün Sirer Department of Computer Science, Cornell University ittay.eyal@cornell.edu, egs@systems.cs.cornell.edu

# **Original Algorithm**

#### Algorithm 1: Selfish-Mine

| 1         | on Init                                                                                             |                                     |
|-----------|-----------------------------------------------------------------------------------------------------|-------------------------------------|
| 2         | public chain $\leftarrow$ publicly known blocks                                                     |                                     |
| 3         | private chain $\leftarrow$ publicly known blocks                                                    |                                     |
| 4         | $privateBranchLen \leftarrow 0$                                                                     |                                     |
| 5         | Mine at the head of the private chain.                                                              |                                     |
| 6         | <b>on</b> My pool found a block                                                                     |                                     |
| 7         | $\Delta_{nrev} \leftarrow \text{length}(\text{private chain}) - \text{length}(\text{public chain})$ |                                     |
| 8         | append new block to private chain                                                                   |                                     |
| 9         | $privateBranchLen \leftarrow privateBranchLen + 1$                                                  |                                     |
| 10        | if $\Delta_{prev} = 0$ and privateBranchLen = 2 then                                                | (Was tie with branch of $1$ )       |
| 11        | publish all of the private chain                                                                    | (Pool wins due to the lead of $1$ ) |
| <b>12</b> | $privateBranchLen \leftarrow 0$                                                                     |                                     |
| 13        | Mine at the new head of the private chain.                                                          |                                     |
| 14        | <b>on</b> Others found a block                                                                      |                                     |
| 15        | $\Delta_{nrev} \leftarrow \text{length}(\text{private chain}) - \text{length}(\text{public chain})$ |                                     |
| 16        | append new block to public chain                                                                    |                                     |
| 17        | if $\Delta_{prev} = 0$ then                                                                         |                                     |
| 18        | private chain $\leftarrow$ public chain                                                             | (they win)                          |
| <b>19</b> | $privateBranchLen \leftarrow 0$                                                                     |                                     |
| 20        | else if $\Delta_{prev} = 1$ then                                                                    |                                     |
| <b>21</b> | publish last block of the private chain                                                             | (Now same length. Try our luck)     |
| 22        | else if $\Delta_{prev} = 2$ then                                                                    | , ,                                 |
| 23        | publish all of the private chain                                                                    | (Pool wins due to the lead of $1$ ) |
| <b>24</b> | $privateBranchLen \leftarrow 0$                                                                     |                                     |
| <b>25</b> | else                                                                                                | $(\Delta_{prev} > 2)$               |
| 26        | publish first unpublished block in private block.                                                   |                                     |
| 27        | Mine at the head of the private chain.                                                              |                                     |

# Somewhat Simpler Algorithm

#### Algorithm 26.2 Selfish Mining

- 1: Idea: Mine secretly, without immediately publishing newly found blocks
- 2: Let  $d_p$  be the depth of the public blockchain
- 3: Let  $d_s$  be the depth of the secretly mined blockchain
- 4: if a new block  $b_p$  is published, i.e.,  $d_p$  has increased by 1 then
- 5: if  $d_p > d_s$  then
- 6: Start mining on that newly published block  $b_p$
- 7: else if  $d_p = d_s$  then
- 8: Publish secretly mined block  $b_s$
- 9: Mine on  $b_s$  and publish newly found block immediately
- 10: else if  $d_p = d_s 1$  then
- 11: Publish both secretly mined blocks
- 12: **end if**
- 13: end if



# Somewhat Simpler Algorithm

#### Algorithm 26.2 Selfish Mining

- 1: Idea: Mine secretly, without immediately publishing newly found blocks
- 2: Let  $d_p$  be the depth of the public blockchain
- 3: Let  $d_s$  be the depth of the secretly mined blockchain
- 4: if a new block  $b_p$  is published, i.e.,  $d_p$  has increased by 1 then
- 5: if  $d_p > d_s$  then
- 6: Start mining on that newly published block  $b_p$
- 7: else if  $d_p = d_s$  then
- 8: Publish secretly mined block  $b_s$
- 9: Mine on  $b_s$  and publish newly found block immediately
- 10: else if  $d_p = d_s 1$  then
- 11: Publish both secretly mined blocks
- 12: **end if**
- 13: end if





# Somewhat Simpler Algorithm

#### Algorithm 26.2 Selfish Mining

- 1: Idea: Mine secretly, without immediately publishing newly found blocks
- 2: Let  $d_p$  be the depth of the public blockchain
- 3: Let  $d_s$  be the depth of the secretly mined blockchain
- 4: if a new block  $b_p$  is published, i.e.,  $d_p$  has increased by 1 then
- 5: if  $d_p > d_s$  then
- 6: Start mining on that newly published block  $b_p$
- 7: else if  $d_p = d_s$  then
- 8: Publish secretly mined block  $b_s$
- 9: Mine on  $b_s$  and publish newly found block immediately
- 10: else if  $d_p = d_s 1$  then
- 11: Publish both secretly mined blocks
- 12: **end if**
- 13: end if





### State Machine (Original & Simpler)





 $\alpha$ : probability that selfish miner finds a block

#### **Stationary Distribution**

$$p_1 = \alpha p_0$$
  

$$\beta p_{i+1} = \alpha p_i, \text{ for all } i > 1$$
  
and 
$$1 = \sum_i p_i.$$



#### Computation...

$$p_1 = \alpha p_0$$
  

$$\beta p_{i+1} = \alpha p_i, \text{ for all } i > 1$$
  
and 
$$1 = \sum_i p_i.$$

Using  $\rho = \alpha/\beta$ , we express all terms of above sum with  $p_1$ :

$$1 = \frac{p_1}{\alpha} + p_1 \sum_{i \ge 0} \rho^i = \frac{p_1}{\alpha} + \frac{p_1}{1 - \rho}, \text{ hence } p_1 = \frac{2\alpha^2 - \alpha}{\alpha^2 + \alpha - 1}$$

# All $\beta$ Transitions





 $\gamma$ : probability that honest miners append block to selfish miner's block (in race)

#### Ratio of Selfish Blocks in Chain

$$\frac{1 - p_0 + p_2 + \alpha p_1 - \beta (1 - \gamma) p_1}{1 + p_1 + p_2}$$



 $\gamma$ : probability that honest miners append block to selfish miner's block (in race)

#### Selfish Miner Share

$$\frac{\alpha(1-\alpha)^2(4\alpha+\gamma(1-2\alpha))-\alpha^3}{1-\alpha(1+(2-\alpha)\alpha)}$$



#### Selfish Miner Share

$$\frac{\alpha(1-\alpha)^2(4\alpha+\gamma(1-2\alpha))-\alpha^3}{1-\alpha(1+(2-\alpha)\alpha)}$$

$$\gamma = 0$$
: break even at  $\alpha = 1/3$   
 $\gamma = 0.5$ : break even at  $\alpha = 1/4$   
 $\gamma = 1$ : break even at  $\alpha > 0$ 

A Blockchain Without Altruism? [Joint Work with Jakub Sliwinski]

#### Simple Chains Are Too Simple



#### **Better: Expose Competition**



# **Our Rational Blockchain**

#### Always Refer to All Childless Blocks



### Only One Type of Reference



#### (Heaviest Reference is Your "Parent")



**Inclusive Block Chain Protocols** 

# Incentives

# Why Miners Should Always Refer to All Childless Blocks?

# Because of our Block Rewards!

#### It's Somewhat Complicated...



### Motivating Block Rewards I



### Motivating Block Rewards II



Reward = 0.69

#### **Our Solution**

**Definition 3** (Penalty Function). Given are a pair of competing branches  $\mathcal{B}_X$ and  $\mathcal{B}_Y$  where  $|\mathcal{B}_X| \ge |\mathcal{B}_Y|$ , and a set E of edges between them, such that every block in  $\mathcal{B}_Y$  has an incident edge. Then f is defined as follows:

1. f assigns a maximum penalty to all blocks in the smaller branch:

$$\forall_{B \in \mathcal{B}_Y} : f(B) = 1.$$

2. Each block's penalty is divided among incident edges:

$$\left(\forall_{(A,B)\in E} : f((A,B)) \ge 0\right) \land \left(\forall_{B\in\mathcal{B}_X\cup\mathcal{B}_Y} : f(B) = \sum_{A\in E(B)} f((A,B))\right).$$

3. Differences in penalties between blocks in the bigger branch are minimised:

$$\forall_{B \in \mathcal{B}_Y} : \left( \left( (A_1, B), (A_2, B) \in E \land f((A_1, B)) > 0 \right) \implies f(A_1) \le f(A_2) \right).$$

**Definition 4** (Reward Scheme). Creator of any block B receives an amount r(B) of cryptocurrency to the address  $c_B$ . Any spending transaction from this address is valid only if included in a block C such that LCA(B, C) > 2p.

$$r(B) = R(1 - \max_{\mathcal{B}_X, \mathcal{B}_Y} f_{\mathcal{B}_X, \mathcal{B}_Y, E}(B)) + \sum_{tx \in \mathcal{T}_B} fee_B(tx)$$

Here, R is the base block reward, and E consists of edges from the conflict graph of G. fee<sub>B</sub>(tx) is discussed in section 3.1.

#### **Block Penalty Example**



#### **Block Penalty Example**



#### **Block Penalty Example**



#### The Penalty Algorithm



#### The Penalty Algorithm





### **Transaction Fees**





#### **Bitcoin: A Peer-to-Peer Electronic Cash System**

Satoshi Nakamoto satoshin@gmx.com www.bitcoin.org

rational "The system is secure as long as bonest nodes collectively control more CPU power than any cooperating group of attacker nodes."

# Thank You!

**Questions & Comments?** 

Thanks to Jakub Sliwinski

www.disco.ethz.ch